Log-convexity of rate region in 802.11e WLANs
نویسندگان
چکیده
منابع مشابه
Convexity Conditions for 802.11 WLANs
In this paper we characterise the maximal convex subsets of the (non-convex) rate region in 802.11 WLANs. In addition to being of intrinsic interest as a fundamental property of 802.11 WLANs, this characterisation can be exploited to allow the wealth of convex optimisation approaches to be applied to 802.11 WLANs.
متن کاملBell Numbers, Log-concavity, and Log-convexity
Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...
متن کاملLog–convexity of Combinatorial Sequences from Their Convexity
A sequence (xn)n 0 of positive real numbers is log-convex if the inequality xn xn−1xn+1 is valid for all n 1 . We show here how the problem of establishing the log-convexity of a given combinatorial sequence can be reduced to examining the ordinary convexity of related sequences. The new method is then used to prove that the sequence of Motzkin numbers is log-convex.
متن کاملLog-convexity and log-concavity of hypergeometric-like functions
We find sufficient conditions for log-convexity and log-concavity for the functions of the forms a 7→ ∑ fk(a)kx , a 7→ ∑ fkΓ(a + k)x k and a 7→ ∑ fkx k/(a)k. The most useful examples of such functions are generalized hypergeometric functions. In particular, we generalize the Turán inequality for the confluent hypergeometric function recently proved by Barnard, Gordy and Richards and log-convexi...
متن کاملConvexity and Log Convexity for the Spectral Radius
The starting point of this paper is a theorem by J. F. C. Kingman which asserts that if the entries of a nonnegative matrix are log convex functions of a variable then so is the spectral radius of the matrix. A related result of J. Cohen asserts that the spectral radius of a nonnegative matrix is a convex function of the diagonal elements. The first section of this paper gives a new, unified pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Communications Letters
سال: 2010
ISSN: 1089-7798
DOI: 10.1109/lcomm.2010.01.091154